Sains Malaysiana 54(1)(2025):
93-108
http://doi.org/10.17576/jsm-2025-5401-08
Analisis Kinetik
bagi Segmen Bahagian Pinggiran Atas Badan semasa Melakukan Aktiviti Kehidupan
Harian
(Kinetic Analysis of Upper Extremity
Segment during Activities of Daily Living)
HASYATUN
CHE-NAN1,2 & AZMIN SHAM RAMBELY2,*
1Jabatan Matematik dan Sains Komputer, Kolej
Poly-Tech MARA Bangi, 43000 Kajang, Selangor, Malaysia
2Jabatan Sains Matematik, Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 21 July
2024/Accepted: 13 September 2024
Abstrak
Pembangunan
model biomekanik untuk mendapatkan nilai kilasan dapat membantu mencegah
kecederaan daripada berlaku. Kajian ini bertujuan untuk membangunkan model
biomekanik bahagian atas badan yang merangkumi lengan atas, lengan bawah dan
tangan untuk mendapatkan nilai kilasan sendi bahu, siku dan pergelangan tangan
semasa melakukan aktiviti menyentuh bahu kontra lateral, mencapai suis dan
menyikat rambut. Seterusnya, model biomekanik ini disahkan melalui perbezaan
antara nilai sudut uji kaji dengan nilai sudut anggaran menggunakan kaedah
berangka, Runge-Kutta peringkat kelima. Selain itu, kajian ini dijalankan untuk
menganalisis dan membandingkan nilai kilasan semasa melakukan tiga aktiviti
kehidupan harian. Kajian ini melibatkan 20 orang subjek normal dalam lingkungan
umur 24-56 tahun dengan purata berat badan 72.9±16.5 kg. Aktiviti pergerakan
dirakam menggunakan Vicon Nexus 1.8.1 (Oxford Metrics Ltd., Oxford, England)
dengan kadar frekuensi 100 Hz. Melalui rakaman ini, data kinematik seperti
tempoh masa pergerakan, sudut, halaju dan pecutan sudut sendi diperoleh. Nilai
kilasan sendi diramal berdasarkan model anggota bahagian atas badan dengan
menggantikan data kinematik ke dalam persamaan dinamik songsang yang
diterbitkan menggunakan kaedah Kane. Pengesahan pemodelan menggunakan kaedah
Runge-Kutta peringkat kelima Butcher bagi memperoleh semula nilai sudut
anggaran menggunakan nilai kilasan yang telah dianggarkan. Peratusan ralat
relatif telah dihitung dan didapati ia tidak terlalu besar dengan nilai 0.038%
bagi nilai sudut bahu dan 0.019% bagi nilai sudut siku. Oleh itu, dapat
disimpulkan bahawa data sudut uji kaji dan data sudut anggaran adalah sepadan.
Seterusnya, nilai kilasan dianalisis menggunakan analisis varian satu hala
(ANOVA). Hasil kajian mendapati tidak terdapat perbezaan yang signifikan pada
semua parameter kinetik bagi ketiga-tiga aktiviti yang dikaji. Oleh itu, kajian
kinetik ini membantu memperoleh pemahaman tentang biomekanik pergerakan
menerusi nilai kilasan, yang seterusnya menyumbang kepada kemajuan dalam teknik
pemulihan dan reka bentuk ergonomik.
Kata kunci:
Analisis kinetik; anggota badan bahagian atas; kilasan; mencapai suis;
menyentuh bahu kontra lateral; menyikat rambut
Abstract
The
development of this model aims to obtain torque values that help prevent
injuries from occurring. Thus, this study aims to develop a biomechanical model
for the upper limb, which includes the upper arm, forearm, and hand, to obtain
torque values for the shoulder, elbow, and wrist joints during daily activities
touching the contralateral shoulder, reaching for a switch, and combing hair.
Subsequently, this biomechanical model is validated by comparing the
differences between the experimental angle values and the estimated angle
values using the fifth-order Runge-Kutta numerical method. In addition, this
study is conducted to analyze and compare the kinetic data values while
performing three daily activities. The study included 20 normal subjects in the
age range of 24-56 years old, with an average body weight of 72.9±16.5 kg. The
activity was recorded using the Vicon Nexus 1.8.1 (Oxford Metrics Ltd., Oxford,
England) system with a frequency rate of 100 Hz. Through this recording,
kinematics data such as movement time, angles, velocity, and angular
acceleration of upper limb joints were obtained. Torque joint values were
derived using the Kane’s method which was based on the upper extremity model by
applying the kinematics data to the inverse dynamic equation. Furthermore,
Butcher’s fifth-order Runge-Kutta method was used to determine the estimated
angle value using the already determined torque. The relative error percentage
was calculated and found that it was not too large, with values of 0.038% for
the shoulder angle and 0.019% for the elbow angle. Therefore, it was concluded
that the experimental angle data and the estimated angle data are consistent.
The data were then analyzed using a one-way analysis of variance (ANOVA). The
results indicated there is no significant differences in any of the kinetic
parameters for all three analyzed activities. Therefore, this kinetic study can
help us gain some insights into the biomechanics of movement using torque
value, which later will improve rehabilitation techniques and ergonomic design.
Keywords: Hair
combing; kinetic analysis; reaching switch; torque; touching contralateral
shoulder; upper extremity
REFERENCES
Abdalla, F.S. & Rambely, A.S. 2014.
Predicting the safe load on backpacker’s arm using Lagrange multipliers method. AIP Conference Proceedings 1614(1): 948-954.
Bloomer, C., Wang, S. & Kontson, K.
2020. Kinematic analysis of motor learning in upper limb body-powered bypass
prosthesis training. PLoS ONE 15(1): e0226563.
Chai, T., Li, A., Zhang, S., Li, Z. &
Wang, Y. 2022. Lagrange motion analysis and view embeddings for improved gait
recognition. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). hlm. 20217-20226.
Che-Nan, H. & Rambely, A.S. 2022.
Kinematic analysis of daily activity of touching lateral shoulder for normal
subjects. Applied Sciences 12(4): 2069.
Che-Nan, H. & Rambely, A.S. 2017. Peak
velocity of elbow joint during touching contra lateral shoulder activity for
normal subject. The 4th International Conference on Mathematical
Sciences. hlm. 1-6.
Che-Nan, H., Rambely, A.S., Ghani, N.A.B.
& Abidin, S.B.Z. 2018. Optimization of lower extremity segment during
backpack carriage. Far East Journal of Mathematical Sciences 106(2):
563-575.
Cleather, D.J., Goodwin, J.E. & Bull,
A.M.J. 2011. An optimization approach to inverse dynamics provides insight as
to the function of the biarticular muscles during vertical jumping. Annals
of Biomedical Engineering 39(1): 147-160.
DeVita, P. & Hortobagyi, T. 2000. Age
causes a redistribution of joint torques and powers during gait. Journal of
Applied Physiology 88(5): 1804-1811.
Flash, T. & Hogan, N. 1985. The
coordination of arm movements: An experimentally confirmed mathematical model. Journal
of Neuroscience 5(7): 1688-1703.
Fukuchi, C.A., Fukuchi, R.K. & Duarte,
M. 2019. Effects of walking speed on gait biomechanics in healthy participants:
A systematic review and meta-analysis. Systematic Reviews 8(1): 153.
Fuller, J., Liu, L.J., Murphy, M.C. &
Mann, R.W. 1997. A comparison of lower-extremity skeletal kinematics measured
using skin- and pin-mounted markers. Human Movement Science 16(2-3):
219-242.
Hall, L.C., Middlebrook, E.E. &
Dickerson, C.R. 2011. Analysis of the influence of rotator cuff impingements on
upper limb kinematics in an elderly population during activities of daily
living. Clinical Biomechanics 26(6): 579-584.
Hansen, C., Gosselin, F., Mansour, K.B.,
Devos, P. & Marin, F. 2018. Design-validation of a hand exoskeleton using
musculoskeletal modeling. Applied Ergonomics 68: 283-288.
Henley, J.D. 2002. A kinematic and kinetic
analysis of postural perturbation. Tesis Dr. Fal, The Pennsylvania State
University.
Hossain, M.B., Hossain, M.J., Miah, M.M.
& Alam, M.S. 2017. A comparative study on fourth order and Butcher’s fifth
order Runge-Kutta methods with third order initial value problem (IVP). Applied
and Computational Mathematics 6(6): 243-253.
Hussain, Z. & Azlan, N.Z. 2019. 3-D
dynamic modeling and validation of human arm for torque determination during
eating activity using Kane’s method. Iranian Journal of Science and
Technology - Transactions of Mechanical Engineering 44: 661-694.
Huysamen, K., Bosch, T., de Looze, M.,
Stadler, K.S., Graf, E. & O’Sullivan, L.W. 2018. Evaluation of a passive
exoskeleton for static upper limb activities. Applied Ergonomic 70:
148-155.
Karner, J., Reichenfelser, W. &
Gfoehler, M. 2012. Kinematic and kinetic analysis of human motion as design
input for an upper extremity bracing system. Proceedings of the IASTED
International Conference Biomedical Engineering. hlm. 376-383.
Lee, T.S. & Lin, Y.J. 1992. An
investigation of numerical computations for inverse dynamics of robotic
systems. Proceedings IEEE International Conference on Systems, Man and
Cybernetics. hlm. 1476-1480.
Li, X., Sun, H., Liao, L. & Song, J.
2015. Simulation and comparison research of Lagrange and Kane dynamics modeling
for the 4-dof modular industrial robot. 5th International
Conference on Advanced Design and Manufacturing Engineering. hlm. 251-254.
Masjedi, M. & Duffell, L.D. 2013.
Dynamic analysis of the upper limb during activities of daily living:
Comparison of methodologies. Journal of Engineering in Medicine 227(12):
1275-1283.
McGrath, M., Howard, D. & Baker, R.
2017. A Lagrange-based generalised formulation for the equations of motion of
simple walking models. Journal of Biomechanics 55: 139-143.
Mesquita, I.A., Fonseca, P.F.P.,
Borgonovo-Santos, M., Ribeiro, E., Pinheiro, A.R.V., Correia, M.V. & Silva,
C. 2020. Comparison of upper limb kinematics in two activities of daily living
with different handling requirements. Human Movement Science 72:
102632.
Molina-Garcia, P., Migueles, J.H.,
Cadenas-Sanchez, C., Esteban-Cornejo, I., Mora-Gonzalez, J., Rodriguez-Ayllon,
M., Plaza-Florido, A., Vanrenterghem, J. & Ortega, F.B. 2019. A systematic
review on biomechanical characteristics of walking in children and adolescents
with overweight/obesity: Possible implications for the development of
musculoskeletal disorders. Obesity Reviews 20(7): 1033-1044.
Murray, I.A. & Johnson, G.R. 2004. A
study of the external forces and moments at the shoulder and elbow while
performing every day tasks. Clinical Biomechanics 19(6): 586-594.
Nester, C., Jones, R.K., Liu, A., Howard,
D., Lundberg, A., Arndt, A., Lundgren, P., Stacoff, A. & Wolf, P. 2007.
Foot kinematics during walking measured using bone and surface mounted markers. Journal of Biomechanics 40(15): 3412-3423.
Pennestri, E., Stefanelli, R., Valentini,
P.P. & Vita, L. 2007. Virtual musculo-skeletal model for the biomechanical
analysis of the upper limb. Journal of Biomechanics 40(6): 1350-1361.
Pol, F., Baharlouei, H., Taheri, A., Menz,
H.B. & Forghany, S. 2021. Foot and ankle biomechanics during walking in
alder adults: A systematic review and meta-analysis of observational studies. Gait
and Posture 89: 14-24.
Purushotham, A. 2013. Kane’s method for
robotic arm dynamics: A novel approach. Journal of Mechanical and Civil
Engineering 6: 7-13.
Rambely, A.S. & Fazrolrozi. 2012. A
six-link kinematic chain model of human body using Kane’s method. International
Journal of Modern Physics: Conference Series. hlm. 59-67.
Rehbinder, H. & Martin, C. 2001. A
control theoretic model of the forearm. Journal of Biomechanics 34(6):
741-748.
Ren, L., Jones, R.K. & Howard, D. 2005.
Dynamic analysis of load carriage biomechanics during level walking. Journal
of Biomechanics 38(4): 853-863.
Reyes-Guzmán, A.D.L., Gil-Agudo, A.,
Penasco-Martin, B., Solis-Mozos, M., Ama-Espinosa, A.D. & Perez-Rizo, E.
2010. Kinematic analysis of the daily activity of drinking from a glass in a
population with cervical spinal cord injury. Journal of Neuroengineering and
Rehabilitation 7(41): 1-12.
*Corresponding author; email:
asr@ukm.edu.my