Sains Malaysiana 54(1)(2025): 93-108

http://doi.org/10.17576/jsm-2025-5401-08

 

Analisis Kinetik bagi Segmen Bahagian Pinggiran Atas Badan semasa Melakukan Aktiviti Kehidupan Harian

(Kinetic Analysis of Upper Extremity Segment during Activities of Daily Living)

 

HASYATUN CHE-NAN1,2 & AZMIN SHAM RAMBELY2,*

 

1Jabatan Matematik dan Sains Komputer, Kolej Poly-Tech MARA Bangi, 43000 Kajang, Selangor, Malaysia
2Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 21 July 2024/Accepted: 13 September 2024

 

Abstrak

Pembangunan model biomekanik untuk mendapatkan nilai kilasan dapat membantu mencegah kecederaan daripada berlaku. Kajian ini bertujuan untuk membangunkan model biomekanik bahagian atas badan yang merangkumi lengan atas, lengan bawah dan tangan untuk mendapatkan nilai kilasan sendi bahu, siku dan pergelangan tangan semasa melakukan aktiviti menyentuh bahu kontra lateral, mencapai suis dan menyikat rambut. Seterusnya, model biomekanik ini disahkan melalui perbezaan antara nilai sudut uji kaji dengan nilai sudut anggaran menggunakan kaedah berangka, Runge-Kutta peringkat kelima. Selain itu, kajian ini dijalankan untuk menganalisis dan membandingkan nilai kilasan semasa melakukan tiga aktiviti kehidupan harian. Kajian ini melibatkan 20 orang subjek normal dalam lingkungan umur 24-56 tahun dengan purata berat badan 72.9±16.5 kg. Aktiviti pergerakan dirakam menggunakan Vicon Nexus 1.8.1 (Oxford Metrics Ltd., Oxford, England) dengan kadar frekuensi 100 Hz. Melalui rakaman ini, data kinematik seperti tempoh masa pergerakan, sudut, halaju dan pecutan sudut sendi diperoleh. Nilai kilasan sendi diramal berdasarkan model anggota bahagian atas badan dengan menggantikan data kinematik ke dalam persamaan dinamik songsang yang diterbitkan menggunakan kaedah Kane. Pengesahan pemodelan menggunakan kaedah Runge-Kutta peringkat kelima Butcher bagi memperoleh semula nilai sudut anggaran menggunakan nilai kilasan yang telah dianggarkan. Peratusan ralat relatif telah dihitung dan didapati ia tidak terlalu besar dengan nilai 0.038% bagi nilai sudut bahu dan 0.019% bagi nilai sudut siku. Oleh itu, dapat disimpulkan bahawa data sudut uji kaji dan data sudut anggaran adalah sepadan. Seterusnya, nilai kilasan dianalisis menggunakan analisis varian satu hala (ANOVA). Hasil kajian mendapati tidak terdapat perbezaan yang signifikan pada semua parameter kinetik bagi ketiga-tiga aktiviti yang dikaji. Oleh itu, kajian kinetik ini membantu memperoleh pemahaman tentang biomekanik pergerakan menerusi nilai kilasan, yang seterusnya menyumbang kepada kemajuan dalam teknik pemulihan dan reka bentuk ergonomik.

 

Kata kunci: Analisis kinetik; anggota badan bahagian atas; kilasan; mencapai suis; menyentuh bahu kontra lateral; menyikat rambut

 

Abstract

The development of this model aims to obtain torque values that help prevent injuries from occurring. Thus, this study aims to develop a biomechanical model for the upper limb, which includes the upper arm, forearm, and hand, to obtain torque values for the shoulder, elbow, and wrist joints during daily activities touching the contralateral shoulder, reaching for a switch, and combing hair. Subsequently, this biomechanical model is validated by comparing the differences between the experimental angle values and the estimated angle values using the fifth-order Runge-Kutta numerical method. In addition, this study is conducted to analyze and compare the kinetic data values while performing three daily activities. The study included 20 normal subjects in the age range of 24-56 years old, with an average body weight of 72.9±16.5 kg. The activity was recorded using the Vicon Nexus 1.8.1 (Oxford Metrics Ltd., Oxford, England) system with a frequency rate of 100 Hz. Through this recording, kinematics data such as movement time, angles, velocity, and angular acceleration of upper limb joints were obtained. Torque joint values were derived using the Kane’s method which was based on the upper extremity model by applying the kinematics data to the inverse dynamic equation. Furthermore, Butcher’s fifth-order Runge-Kutta method was used to determine the estimated angle value using the already determined torque. The relative error percentage was calculated and found that it was not too large, with values of 0.038% for the shoulder angle and 0.019% for the elbow angle. Therefore, it was concluded that the experimental angle data and the estimated angle data are consistent. The data were then analyzed using a one-way analysis of variance (ANOVA). The results indicated there is no significant differences in any of the kinetic parameters for all three analyzed activities. Therefore, this kinetic study can help us gain some insights into the biomechanics of movement using torque value, which later will improve rehabilitation techniques and ergonomic design.

 

Keywords: Hair combing; kinetic analysis; reaching switch; torque; touching contralateral shoulder; upper extremity

 

REFERENCES

Abdalla, F.S. & Rambely, A.S. 2014. Predicting the safe load on backpacker’s arm using Lagrange multipliers method. AIP Conference Proceedings 1614(1): 948-954.

Bloomer, C., Wang, S. & Kontson, K. 2020. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training. PLoS ONE 15(1): e0226563.

Chai, T., Li, A., Zhang, S., Li, Z. & Wang, Y. 2022. Lagrange motion analysis and view embeddings for improved gait recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). hlm. 20217-20226.

Che-Nan, H. & Rambely, A.S. 2022. Kinematic analysis of daily activity of touching lateral shoulder for normal subjects. Applied Sciences 12(4): 2069.

Che-Nan, H. & Rambely, A.S. 2017. Peak velocity of elbow joint during touching contra lateral shoulder activity for normal subject. The 4th International Conference on Mathematical Sciences. hlm. 1-6.

Che-Nan, H., Rambely, A.S., Ghani, N.A.B. & Abidin, S.B.Z. 2018. Optimization of lower extremity segment during backpack carriage. Far East Journal of Mathematical Sciences 106(2): 563-575.

Cleather, D.J., Goodwin, J.E. & Bull, A.M.J. 2011. An optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping. Annals of Biomedical Engineering 39(1): 147-160.

DeVita, P. & Hortobagyi, T. 2000. Age causes a redistribution of joint torques and powers during gait. Journal of Applied Physiology 88(5): 1804-1811.

Flash, T. & Hogan, N. 1985. The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5(7): 1688-1703.

Fukuchi, C.A., Fukuchi, R.K. & Duarte, M. 2019. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Systematic Reviews 8(1): 153.

Fuller, J., Liu, L.J., Murphy, M.C. & Mann, R.W. 1997. A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Human Movement Science 16(2-3): 219-242.

Hall, L.C., Middlebrook, E.E. & Dickerson, C.R. 2011. Analysis of the influence of rotator cuff impingements on upper limb kinematics in an elderly population during activities of daily living. Clinical Biomechanics 26(6): 579-584.

Hansen, C., Gosselin, F., Mansour, K.B., Devos, P. & Marin, F. 2018. Design-validation of a hand exoskeleton using musculoskeletal modeling. Applied Ergonomics 68: 283-288.

Henley, J.D. 2002. A kinematic and kinetic analysis of postural perturbation. Tesis Dr. Fal, The Pennsylvania State University.

Hossain, M.B., Hossain, M.J., Miah, M.M. & Alam, M.S. 2017. A comparative study on fourth order and Butcher’s fifth order Runge-Kutta methods with third order initial value problem (IVP). Applied and Computational Mathematics 6(6): 243-253.

Hussain, Z. & Azlan, N.Z. 2019. 3-D dynamic modeling and validation of human arm for torque determination during eating activity using Kane’s method. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering 44: 661-694.

Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E. & O’Sullivan, L.W. 2018. Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomic 70: 148-155.

Karner, J., Reichenfelser, W. & Gfoehler, M. 2012. Kinematic and kinetic analysis of human motion as design input for an upper extremity bracing system. Proceedings of the IASTED International Conference Biomedical Engineering. hlm. 376-383.

Lee, T.S. & Lin, Y.J. 1992. An investigation of numerical computations for inverse dynamics of robotic systems. Proceedings IEEE International Conference on Systems, Man and Cybernetics. hlm. 1476-1480.

Li, X., Sun, H., Liao, L. & Song, J. 2015. Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-dof modular industrial robot. 5th International Conference on Advanced Design and Manufacturing Engineering. hlm. 251-254.

Masjedi, M. & Duffell, L.D. 2013. Dynamic analysis of the upper limb during activities of daily living: Comparison of methodologies. Journal of Engineering in Medicine 227(12): 1275-1283.

McGrath, M., Howard, D. & Baker, R. 2017. A Lagrange-based generalised formulation for the equations of motion of simple walking models. Journal of Biomechanics 55: 139-143.

Mesquita, I.A., Fonseca, P.F.P., Borgonovo-Santos, M., Ribeiro, E., Pinheiro, A.R.V., Correia, M.V. & Silva, C. 2020. Comparison of upper limb kinematics in two activities of daily living with different handling requirements. Human Movement Science 72: 102632.

Molina-Garcia, P., Migueles, J.H., Cadenas-Sanchez, C., Esteban-Cornejo, I., Mora-Gonzalez, J., Rodriguez-Ayllon, M., Plaza-Florido, A., Vanrenterghem, J. & Ortega, F.B. 2019. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: Possible implications for the development of musculoskeletal disorders. Obesity Reviews 20(7): 1033-1044.

Murray, I.A. & Johnson, G.R. 2004. A study of the external forces and moments at the shoulder and elbow while performing every day tasks. Clinical Biomechanics 19(6): 586-594.

Nester, C., Jones, R.K., Liu, A., Howard, D., Lundberg, A., Arndt, A., Lundgren, P., Stacoff, A. & Wolf, P. 2007. Foot kinematics during walking measured using bone and surface mounted markers. Journal of Biomechanics 40(15): 3412-3423.

Pennestri, E., Stefanelli, R., Valentini, P.P. & Vita, L. 2007. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. Journal of Biomechanics 40(6): 1350-1361.

Pol, F., Baharlouei, H., Taheri, A., Menz, H.B. & Forghany, S. 2021. Foot and ankle biomechanics during walking in alder adults: A systematic review and meta-analysis of observational studies. Gait and Posture 89: 14-24.

Purushotham, A. 2013. Kane’s method for robotic arm dynamics: A novel approach. Journal of Mechanical and Civil Engineering 6: 7-13.

Rambely, A.S. & Fazrolrozi. 2012. A six-link kinematic chain model of human body using Kane’s method. International Journal of Modern Physics: Conference Series. hlm. 59-67.

Rehbinder, H. & Martin, C. 2001. A control theoretic model of the forearm. Journal of Biomechanics 34(6): 741-748.

Ren, L., Jones, R.K. & Howard, D. 2005. Dynamic analysis of load carriage biomechanics during level walking. Journal of Biomechanics 38(4): 853-863.

Reyes-Guzmán, A.D.L., Gil-Agudo, A., Penasco-Martin, B., Solis-Mozos, M., Ama-Espinosa, A.D. & Perez-Rizo, E. 2010. Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury. Journal of Neuroengineering and Rehabilitation 7(41): 1-12.

 

*Corresponding author; email: asr@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next